Optimal tracking control for underactuated airship
Abstract A non-linear mathematical model of underactuated airship is derived in this paper based on Euler-Newton approach. The model is linearized with small disturbance theory, producing a linear time varying (LTV) model. The LTV model is verified by comparing its output response with the result of...
Ausführliche Beschreibung
Autor*in: |
Atyya, Mohamed [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of engineering and applied science - Berlin : Springer Berlin Heidelberg, 1999, 71(2024), 1 vom: 03. Jan. |
---|---|
Übergeordnetes Werk: |
volume:71 ; year:2024 ; number:1 ; day:03 ; month:01 |
Links: |
---|
DOI / URN: |
10.1186/s44147-023-00324-3 |
---|
Katalog-ID: |
SPR054254752 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR054254752 | ||
003 | DE-627 | ||
005 | 20240104064711.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240104s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s44147-023-00324-3 |2 doi | |
035 | |a (DE-627)SPR054254752 | ||
035 | |a (SPR)s44147-023-00324-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Atyya, Mohamed |e verfasserin |0 (orcid)0000-0002-0314-6908 |4 aut | |
245 | 1 | 0 | |a Optimal tracking control for underactuated airship |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Abstract A non-linear mathematical model of underactuated airship is derived in this paper based on Euler-Newton approach. The model is linearized with small disturbance theory, producing a linear time varying (LTV) model. The LTV model is verified by comparing its output response with the result of the nonlinear model for a given input signal. The verified LTV model is used in designing the LQT controller. The controller is designed to minimize the error between the output and required states response with acceptable control signals using a weighted cost function. Two LQT controllers are presented in this work based on two different costates transformations used in solving the differential Riccati equation (DRE). The first proposed assumption of costates transformation has a good tracking performance, but it is sensitive to the change of trajectory profile, whereas the second one overcomes this problem due to considering the trajectory dynamics. Therefore, the first assumption is performed across the whole trajectory tracking except for parts of trajectory profile changes where the second assumption is applied. The hybrid LQT controller is used and tested on circular, helical, and bowed trajectories. The simulation assured that the introduced hybrid controller results in improving airship performance. | ||
650 | 4 | |a Underactuated systems |7 (dpeaa)DE-He213 | |
650 | 4 | |a Airship modeling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Linear time varying systems |7 (dpeaa)DE-He213 | |
650 | 4 | |a Linear quadratic regulator |7 (dpeaa)DE-He213 | |
650 | 4 | |a Linear quadratic tracking |7 (dpeaa)DE-He213 | |
700 | 1 | |a ElBayoumi, Gamal M. |4 aut | |
700 | 1 | |a Lotfy, Mohamed |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of engineering and applied science |d Berlin : Springer Berlin Heidelberg, 1999 |g 71(2024), 1 vom: 03. Jan. |w (DE-627)1735158240 |w (DE-600)3041047-2 |x 2536-9512 |7 nnns |
773 | 1 | 8 | |g volume:71 |g year:2024 |g number:1 |g day:03 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s44147-023-00324-3 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 71 |j 2024 |e 1 |b 03 |c 01 |
author_variant |
m a ma g m e gm gme m l ml |
---|---|
matchkey_str |
article:25369512:2024----::piatakncnrloudrc |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1186/s44147-023-00324-3 doi (DE-627)SPR054254752 (SPR)s44147-023-00324-3-e DE-627 ger DE-627 rakwb eng Atyya, Mohamed verfasserin (orcid)0000-0002-0314-6908 aut Optimal tracking control for underactuated airship 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract A non-linear mathematical model of underactuated airship is derived in this paper based on Euler-Newton approach. The model is linearized with small disturbance theory, producing a linear time varying (LTV) model. The LTV model is verified by comparing its output response with the result of the nonlinear model for a given input signal. The verified LTV model is used in designing the LQT controller. The controller is designed to minimize the error between the output and required states response with acceptable control signals using a weighted cost function. Two LQT controllers are presented in this work based on two different costates transformations used in solving the differential Riccati equation (DRE). The first proposed assumption of costates transformation has a good tracking performance, but it is sensitive to the change of trajectory profile, whereas the second one overcomes this problem due to considering the trajectory dynamics. Therefore, the first assumption is performed across the whole trajectory tracking except for parts of trajectory profile changes where the second assumption is applied. The hybrid LQT controller is used and tested on circular, helical, and bowed trajectories. The simulation assured that the introduced hybrid controller results in improving airship performance. Underactuated systems (dpeaa)DE-He213 Airship modeling (dpeaa)DE-He213 Linear time varying systems (dpeaa)DE-He213 Linear quadratic regulator (dpeaa)DE-He213 Linear quadratic tracking (dpeaa)DE-He213 ElBayoumi, Gamal M. aut Lotfy, Mohamed aut Enthalten in Journal of engineering and applied science Berlin : Springer Berlin Heidelberg, 1999 71(2024), 1 vom: 03. Jan. (DE-627)1735158240 (DE-600)3041047-2 2536-9512 nnns volume:71 year:2024 number:1 day:03 month:01 https://dx.doi.org/10.1186/s44147-023-00324-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 71 2024 1 03 01 |
spelling |
10.1186/s44147-023-00324-3 doi (DE-627)SPR054254752 (SPR)s44147-023-00324-3-e DE-627 ger DE-627 rakwb eng Atyya, Mohamed verfasserin (orcid)0000-0002-0314-6908 aut Optimal tracking control for underactuated airship 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract A non-linear mathematical model of underactuated airship is derived in this paper based on Euler-Newton approach. The model is linearized with small disturbance theory, producing a linear time varying (LTV) model. The LTV model is verified by comparing its output response with the result of the nonlinear model for a given input signal. The verified LTV model is used in designing the LQT controller. The controller is designed to minimize the error between the output and required states response with acceptable control signals using a weighted cost function. Two LQT controllers are presented in this work based on two different costates transformations used in solving the differential Riccati equation (DRE). The first proposed assumption of costates transformation has a good tracking performance, but it is sensitive to the change of trajectory profile, whereas the second one overcomes this problem due to considering the trajectory dynamics. Therefore, the first assumption is performed across the whole trajectory tracking except for parts of trajectory profile changes where the second assumption is applied. The hybrid LQT controller is used and tested on circular, helical, and bowed trajectories. The simulation assured that the introduced hybrid controller results in improving airship performance. Underactuated systems (dpeaa)DE-He213 Airship modeling (dpeaa)DE-He213 Linear time varying systems (dpeaa)DE-He213 Linear quadratic regulator (dpeaa)DE-He213 Linear quadratic tracking (dpeaa)DE-He213 ElBayoumi, Gamal M. aut Lotfy, Mohamed aut Enthalten in Journal of engineering and applied science Berlin : Springer Berlin Heidelberg, 1999 71(2024), 1 vom: 03. Jan. (DE-627)1735158240 (DE-600)3041047-2 2536-9512 nnns volume:71 year:2024 number:1 day:03 month:01 https://dx.doi.org/10.1186/s44147-023-00324-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 71 2024 1 03 01 |
allfields_unstemmed |
10.1186/s44147-023-00324-3 doi (DE-627)SPR054254752 (SPR)s44147-023-00324-3-e DE-627 ger DE-627 rakwb eng Atyya, Mohamed verfasserin (orcid)0000-0002-0314-6908 aut Optimal tracking control for underactuated airship 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract A non-linear mathematical model of underactuated airship is derived in this paper based on Euler-Newton approach. The model is linearized with small disturbance theory, producing a linear time varying (LTV) model. The LTV model is verified by comparing its output response with the result of the nonlinear model for a given input signal. The verified LTV model is used in designing the LQT controller. The controller is designed to minimize the error between the output and required states response with acceptable control signals using a weighted cost function. Two LQT controllers are presented in this work based on two different costates transformations used in solving the differential Riccati equation (DRE). The first proposed assumption of costates transformation has a good tracking performance, but it is sensitive to the change of trajectory profile, whereas the second one overcomes this problem due to considering the trajectory dynamics. Therefore, the first assumption is performed across the whole trajectory tracking except for parts of trajectory profile changes where the second assumption is applied. The hybrid LQT controller is used and tested on circular, helical, and bowed trajectories. The simulation assured that the introduced hybrid controller results in improving airship performance. Underactuated systems (dpeaa)DE-He213 Airship modeling (dpeaa)DE-He213 Linear time varying systems (dpeaa)DE-He213 Linear quadratic regulator (dpeaa)DE-He213 Linear quadratic tracking (dpeaa)DE-He213 ElBayoumi, Gamal M. aut Lotfy, Mohamed aut Enthalten in Journal of engineering and applied science Berlin : Springer Berlin Heidelberg, 1999 71(2024), 1 vom: 03. Jan. (DE-627)1735158240 (DE-600)3041047-2 2536-9512 nnns volume:71 year:2024 number:1 day:03 month:01 https://dx.doi.org/10.1186/s44147-023-00324-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 71 2024 1 03 01 |
allfieldsGer |
10.1186/s44147-023-00324-3 doi (DE-627)SPR054254752 (SPR)s44147-023-00324-3-e DE-627 ger DE-627 rakwb eng Atyya, Mohamed verfasserin (orcid)0000-0002-0314-6908 aut Optimal tracking control for underactuated airship 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract A non-linear mathematical model of underactuated airship is derived in this paper based on Euler-Newton approach. The model is linearized with small disturbance theory, producing a linear time varying (LTV) model. The LTV model is verified by comparing its output response with the result of the nonlinear model for a given input signal. The verified LTV model is used in designing the LQT controller. The controller is designed to minimize the error between the output and required states response with acceptable control signals using a weighted cost function. Two LQT controllers are presented in this work based on two different costates transformations used in solving the differential Riccati equation (DRE). The first proposed assumption of costates transformation has a good tracking performance, but it is sensitive to the change of trajectory profile, whereas the second one overcomes this problem due to considering the trajectory dynamics. Therefore, the first assumption is performed across the whole trajectory tracking except for parts of trajectory profile changes where the second assumption is applied. The hybrid LQT controller is used and tested on circular, helical, and bowed trajectories. The simulation assured that the introduced hybrid controller results in improving airship performance. Underactuated systems (dpeaa)DE-He213 Airship modeling (dpeaa)DE-He213 Linear time varying systems (dpeaa)DE-He213 Linear quadratic regulator (dpeaa)DE-He213 Linear quadratic tracking (dpeaa)DE-He213 ElBayoumi, Gamal M. aut Lotfy, Mohamed aut Enthalten in Journal of engineering and applied science Berlin : Springer Berlin Heidelberg, 1999 71(2024), 1 vom: 03. Jan. (DE-627)1735158240 (DE-600)3041047-2 2536-9512 nnns volume:71 year:2024 number:1 day:03 month:01 https://dx.doi.org/10.1186/s44147-023-00324-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 71 2024 1 03 01 |
allfieldsSound |
10.1186/s44147-023-00324-3 doi (DE-627)SPR054254752 (SPR)s44147-023-00324-3-e DE-627 ger DE-627 rakwb eng Atyya, Mohamed verfasserin (orcid)0000-0002-0314-6908 aut Optimal tracking control for underactuated airship 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract A non-linear mathematical model of underactuated airship is derived in this paper based on Euler-Newton approach. The model is linearized with small disturbance theory, producing a linear time varying (LTV) model. The LTV model is verified by comparing its output response with the result of the nonlinear model for a given input signal. The verified LTV model is used in designing the LQT controller. The controller is designed to minimize the error between the output and required states response with acceptable control signals using a weighted cost function. Two LQT controllers are presented in this work based on two different costates transformations used in solving the differential Riccati equation (DRE). The first proposed assumption of costates transformation has a good tracking performance, but it is sensitive to the change of trajectory profile, whereas the second one overcomes this problem due to considering the trajectory dynamics. Therefore, the first assumption is performed across the whole trajectory tracking except for parts of trajectory profile changes where the second assumption is applied. The hybrid LQT controller is used and tested on circular, helical, and bowed trajectories. The simulation assured that the introduced hybrid controller results in improving airship performance. Underactuated systems (dpeaa)DE-He213 Airship modeling (dpeaa)DE-He213 Linear time varying systems (dpeaa)DE-He213 Linear quadratic regulator (dpeaa)DE-He213 Linear quadratic tracking (dpeaa)DE-He213 ElBayoumi, Gamal M. aut Lotfy, Mohamed aut Enthalten in Journal of engineering and applied science Berlin : Springer Berlin Heidelberg, 1999 71(2024), 1 vom: 03. Jan. (DE-627)1735158240 (DE-600)3041047-2 2536-9512 nnns volume:71 year:2024 number:1 day:03 month:01 https://dx.doi.org/10.1186/s44147-023-00324-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 71 2024 1 03 01 |
language |
English |
source |
Enthalten in Journal of engineering and applied science 71(2024), 1 vom: 03. Jan. volume:71 year:2024 number:1 day:03 month:01 |
sourceStr |
Enthalten in Journal of engineering and applied science 71(2024), 1 vom: 03. Jan. volume:71 year:2024 number:1 day:03 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Underactuated systems Airship modeling Linear time varying systems Linear quadratic regulator Linear quadratic tracking |
isfreeaccess_bool |
true |
container_title |
Journal of engineering and applied science |
authorswithroles_txt_mv |
Atyya, Mohamed @@aut@@ ElBayoumi, Gamal M. @@aut@@ Lotfy, Mohamed @@aut@@ |
publishDateDaySort_date |
2024-01-03T00:00:00Z |
hierarchy_top_id |
1735158240 |
id |
SPR054254752 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054254752</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240104064711.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240104s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s44147-023-00324-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054254752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44147-023-00324-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Atyya, Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0314-6908</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal tracking control for underactuated airship</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A non-linear mathematical model of underactuated airship is derived in this paper based on Euler-Newton approach. The model is linearized with small disturbance theory, producing a linear time varying (LTV) model. The LTV model is verified by comparing its output response with the result of the nonlinear model for a given input signal. The verified LTV model is used in designing the LQT controller. The controller is designed to minimize the error between the output and required states response with acceptable control signals using a weighted cost function. Two LQT controllers are presented in this work based on two different costates transformations used in solving the differential Riccati equation (DRE). The first proposed assumption of costates transformation has a good tracking performance, but it is sensitive to the change of trajectory profile, whereas the second one overcomes this problem due to considering the trajectory dynamics. Therefore, the first assumption is performed across the whole trajectory tracking except for parts of trajectory profile changes where the second assumption is applied. The hybrid LQT controller is used and tested on circular, helical, and bowed trajectories. The simulation assured that the introduced hybrid controller results in improving airship performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Underactuated systems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Airship modeling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear time varying systems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear quadratic regulator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear quadratic tracking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">ElBayoumi, Gamal M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lotfy, Mohamed</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of engineering and applied science</subfield><subfield code="d">Berlin : Springer Berlin Heidelberg, 1999</subfield><subfield code="g">71(2024), 1 vom: 03. Jan.</subfield><subfield code="w">(DE-627)1735158240</subfield><subfield code="w">(DE-600)3041047-2</subfield><subfield code="x">2536-9512</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s44147-023-00324-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Atyya, Mohamed |
spellingShingle |
Atyya, Mohamed misc Underactuated systems misc Airship modeling misc Linear time varying systems misc Linear quadratic regulator misc Linear quadratic tracking Optimal tracking control for underactuated airship |
authorStr |
Atyya, Mohamed |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1735158240 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2536-9512 |
topic_title |
Optimal tracking control for underactuated airship Underactuated systems (dpeaa)DE-He213 Airship modeling (dpeaa)DE-He213 Linear time varying systems (dpeaa)DE-He213 Linear quadratic regulator (dpeaa)DE-He213 Linear quadratic tracking (dpeaa)DE-He213 |
topic |
misc Underactuated systems misc Airship modeling misc Linear time varying systems misc Linear quadratic regulator misc Linear quadratic tracking |
topic_unstemmed |
misc Underactuated systems misc Airship modeling misc Linear time varying systems misc Linear quadratic regulator misc Linear quadratic tracking |
topic_browse |
misc Underactuated systems misc Airship modeling misc Linear time varying systems misc Linear quadratic regulator misc Linear quadratic tracking |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of engineering and applied science |
hierarchy_parent_id |
1735158240 |
hierarchy_top_title |
Journal of engineering and applied science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1735158240 (DE-600)3041047-2 |
title |
Optimal tracking control for underactuated airship |
ctrlnum |
(DE-627)SPR054254752 (SPR)s44147-023-00324-3-e |
title_full |
Optimal tracking control for underactuated airship |
author_sort |
Atyya, Mohamed |
journal |
Journal of engineering and applied science |
journalStr |
Journal of engineering and applied science |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Atyya, Mohamed ElBayoumi, Gamal M. Lotfy, Mohamed |
container_volume |
71 |
format_se |
Elektronische Aufsätze |
author-letter |
Atyya, Mohamed |
doi_str_mv |
10.1186/s44147-023-00324-3 |
normlink |
(ORCID)0000-0002-0314-6908 |
normlink_prefix_str_mv |
(orcid)0000-0002-0314-6908 |
title_sort |
optimal tracking control for underactuated airship |
title_auth |
Optimal tracking control for underactuated airship |
abstract |
Abstract A non-linear mathematical model of underactuated airship is derived in this paper based on Euler-Newton approach. The model is linearized with small disturbance theory, producing a linear time varying (LTV) model. The LTV model is verified by comparing its output response with the result of the nonlinear model for a given input signal. The verified LTV model is used in designing the LQT controller. The controller is designed to minimize the error between the output and required states response with acceptable control signals using a weighted cost function. Two LQT controllers are presented in this work based on two different costates transformations used in solving the differential Riccati equation (DRE). The first proposed assumption of costates transformation has a good tracking performance, but it is sensitive to the change of trajectory profile, whereas the second one overcomes this problem due to considering the trajectory dynamics. Therefore, the first assumption is performed across the whole trajectory tracking except for parts of trajectory profile changes where the second assumption is applied. The hybrid LQT controller is used and tested on circular, helical, and bowed trajectories. The simulation assured that the introduced hybrid controller results in improving airship performance. © The Author(s) 2023 |
abstractGer |
Abstract A non-linear mathematical model of underactuated airship is derived in this paper based on Euler-Newton approach. The model is linearized with small disturbance theory, producing a linear time varying (LTV) model. The LTV model is verified by comparing its output response with the result of the nonlinear model for a given input signal. The verified LTV model is used in designing the LQT controller. The controller is designed to minimize the error between the output and required states response with acceptable control signals using a weighted cost function. Two LQT controllers are presented in this work based on two different costates transformations used in solving the differential Riccati equation (DRE). The first proposed assumption of costates transformation has a good tracking performance, but it is sensitive to the change of trajectory profile, whereas the second one overcomes this problem due to considering the trajectory dynamics. Therefore, the first assumption is performed across the whole trajectory tracking except for parts of trajectory profile changes where the second assumption is applied. The hybrid LQT controller is used and tested on circular, helical, and bowed trajectories. The simulation assured that the introduced hybrid controller results in improving airship performance. © The Author(s) 2023 |
abstract_unstemmed |
Abstract A non-linear mathematical model of underactuated airship is derived in this paper based on Euler-Newton approach. The model is linearized with small disturbance theory, producing a linear time varying (LTV) model. The LTV model is verified by comparing its output response with the result of the nonlinear model for a given input signal. The verified LTV model is used in designing the LQT controller. The controller is designed to minimize the error between the output and required states response with acceptable control signals using a weighted cost function. Two LQT controllers are presented in this work based on two different costates transformations used in solving the differential Riccati equation (DRE). The first proposed assumption of costates transformation has a good tracking performance, but it is sensitive to the change of trajectory profile, whereas the second one overcomes this problem due to considering the trajectory dynamics. Therefore, the first assumption is performed across the whole trajectory tracking except for parts of trajectory profile changes where the second assumption is applied. The hybrid LQT controller is used and tested on circular, helical, and bowed trajectories. The simulation assured that the introduced hybrid controller results in improving airship performance. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Optimal tracking control for underactuated airship |
url |
https://dx.doi.org/10.1186/s44147-023-00324-3 |
remote_bool |
true |
author2 |
ElBayoumi, Gamal M. Lotfy, Mohamed |
author2Str |
ElBayoumi, Gamal M. Lotfy, Mohamed |
ppnlink |
1735158240 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s44147-023-00324-3 |
up_date |
2024-07-04T00:42:53.142Z |
_version_ |
1803607105227194368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054254752</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240104064711.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240104s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s44147-023-00324-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054254752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44147-023-00324-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Atyya, Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0314-6908</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal tracking control for underactuated airship</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A non-linear mathematical model of underactuated airship is derived in this paper based on Euler-Newton approach. The model is linearized with small disturbance theory, producing a linear time varying (LTV) model. The LTV model is verified by comparing its output response with the result of the nonlinear model for a given input signal. The verified LTV model is used in designing the LQT controller. The controller is designed to minimize the error between the output and required states response with acceptable control signals using a weighted cost function. Two LQT controllers are presented in this work based on two different costates transformations used in solving the differential Riccati equation (DRE). The first proposed assumption of costates transformation has a good tracking performance, but it is sensitive to the change of trajectory profile, whereas the second one overcomes this problem due to considering the trajectory dynamics. Therefore, the first assumption is performed across the whole trajectory tracking except for parts of trajectory profile changes where the second assumption is applied. The hybrid LQT controller is used and tested on circular, helical, and bowed trajectories. The simulation assured that the introduced hybrid controller results in improving airship performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Underactuated systems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Airship modeling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear time varying systems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear quadratic regulator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear quadratic tracking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">ElBayoumi, Gamal M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lotfy, Mohamed</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of engineering and applied science</subfield><subfield code="d">Berlin : Springer Berlin Heidelberg, 1999</subfield><subfield code="g">71(2024), 1 vom: 03. Jan.</subfield><subfield code="w">(DE-627)1735158240</subfield><subfield code="w">(DE-600)3041047-2</subfield><subfield code="x">2536-9512</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s44147-023-00324-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.401037 |