Fully automated artificial intelligence-based coronary CT angiography image processing: efficiency, diagnostic capability, and risk stratification

Objectives To prospectively investigate whether fully automated artificial intelligence (FAAI)-based coronary CT angiography (CCTA) image processing is non-inferior to semi-automated mode in efficiency, diagnostic ability, and risk stratification of coronary artery disease (CAD). Materials and metho...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Zhang, Yaping [verfasserIn]

Feng, Yan [verfasserIn]

Sun, Jianqing [verfasserIn]

Zhang, Lu [verfasserIn]

Ding, Zhenhong [verfasserIn]

Wang, Lingyun [verfasserIn]

Zhao, Keke [verfasserIn]

Pan, Zhijie [verfasserIn]

Li, Qingyao [verfasserIn]

Guo, Ning [verfasserIn]

Xie, Xueqian [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

Computed tomography angiography

Artificial intelligence

Coronary artery disease

Diagnosis

Anmerkung:

© The Author(s), under exclusive licence to European Society of Radiology 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: European radiology - Springer Berlin Heidelberg, 1991, 34(2024), 8 vom: 09. Jan., Seite 4909-4919

Übergeordnetes Werk:

volume:34 ; year:2024 ; number:8 ; day:09 ; month:01 ; pages:4909-4919

Links:

Volltext

DOI / URN:

10.1007/s00330-023-10494-6

Katalog-ID:

SPR056619685

Nicht das Richtige dabei?

Schreiben Sie uns!